

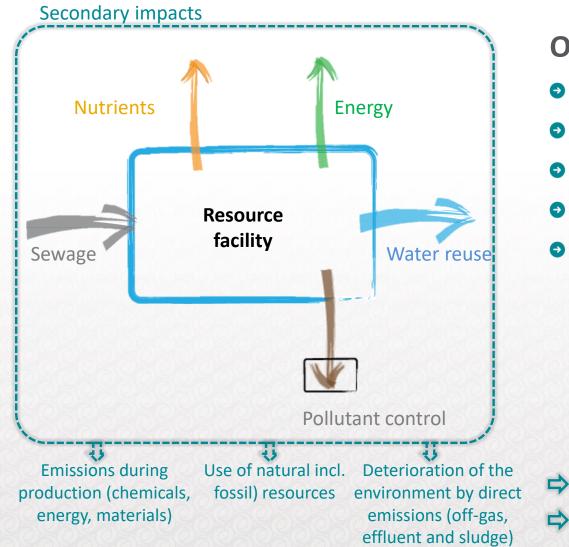
Christian Baresel – IVL Swedish Environmental Research Institute Aleksandra Lazic – Xylem Inc

New approaches and technologies for wastewater treatment

Collaboration at the R&D-facility Hammarby Sjöstadsverk for research, development and demonstration

The main problem: A treatment facility

Challenges

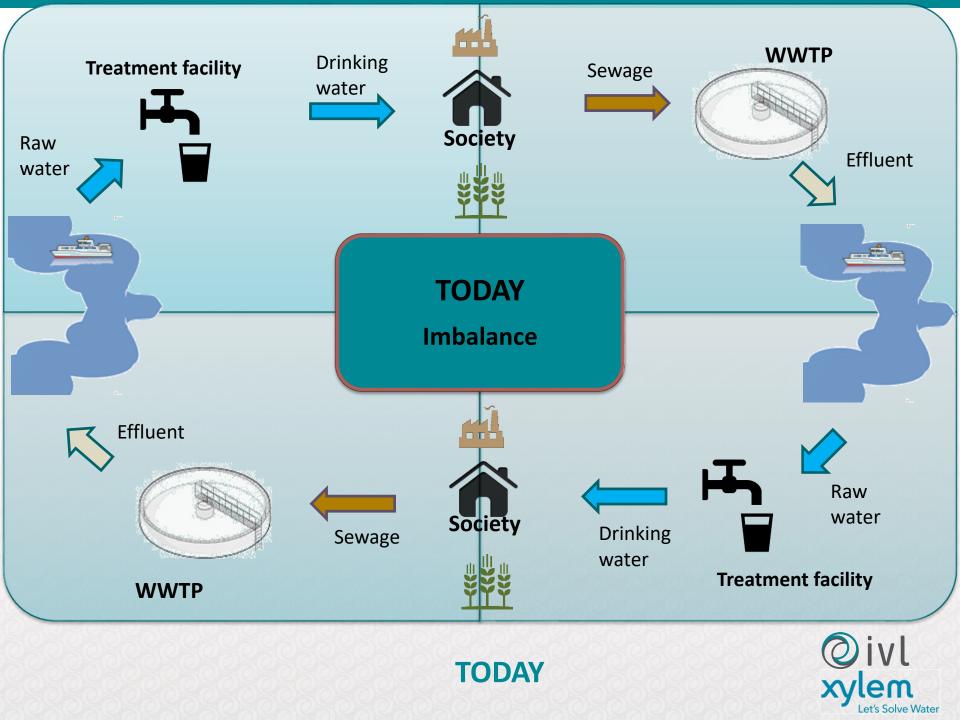

- Ð Use of energy and chemicals
- Greenhouse gas emissions Ð
- Treated water is not clean enough Ð
- Ð Emissions also pose health risks
- Ð Sludge a problem (even if often denied)
- Valuable resources not used
- Ð Natural waters get polluted

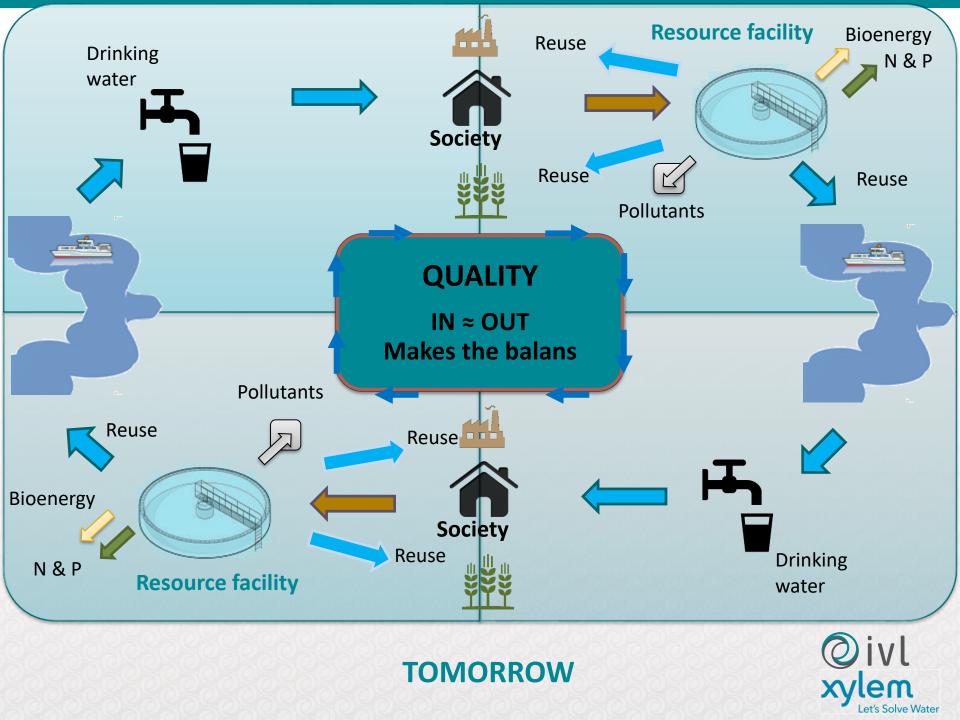
Right approach for a sustainable society?

ivl

et's Solve Water

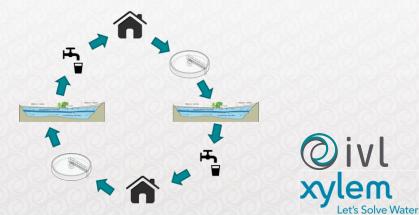
The solution: A resource facility


Opportunities


- Water and sludge as resource
- Net energy production
- Nutrients recovery/reuse
- Emission control
- Water reuse
 - Sustainable production of energy and resources
 - Market opportunities

Lower costs

➡ Less impact

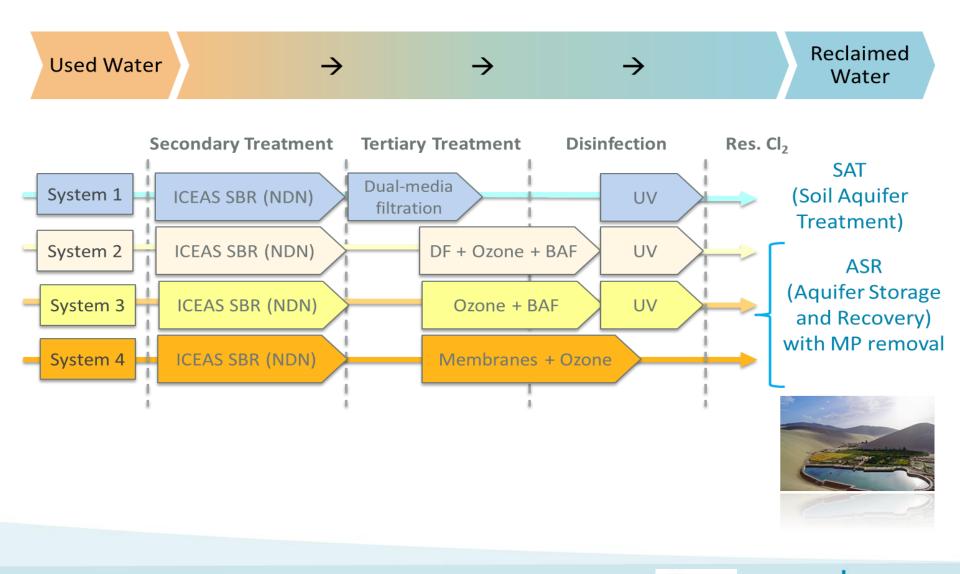


Side effects?

- Quantity problem can be controlled!
- Quality problems can be controlled!
 - ➔ reduced environmental damage and health risk!
- Most problems with environmental damage in the aquatic environment (both known and unknown) can be prevented and eventually natural systems can be restored.
- Functioning/restored ecosystem services
- Sustainable development and new market for innovations!
- Green growth!
- Towards sustainable society!

So what are we waiting for?

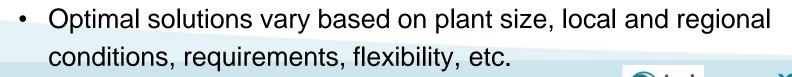
Sustainability evaluation of Non-potable water Reuse systems



Hammarby Sjöstadsverk – R&D facility

- Ambition: To facilitate long-term cooperation between researchers, municipal wastewater treatment plants, and industry
- Partnership for faster development
- Xylem uses Hammarby Sjöstadsverk R&D platform (owned by IVL) to test technologies.
 - Operation and maintenance of the plant
 - · Access to various municipal raw wastewater
 - Access to wide source of technical, fundamental, and applied knowledge
- Research on non-potable water reuse conducted here by Xylem & IVL since 2012

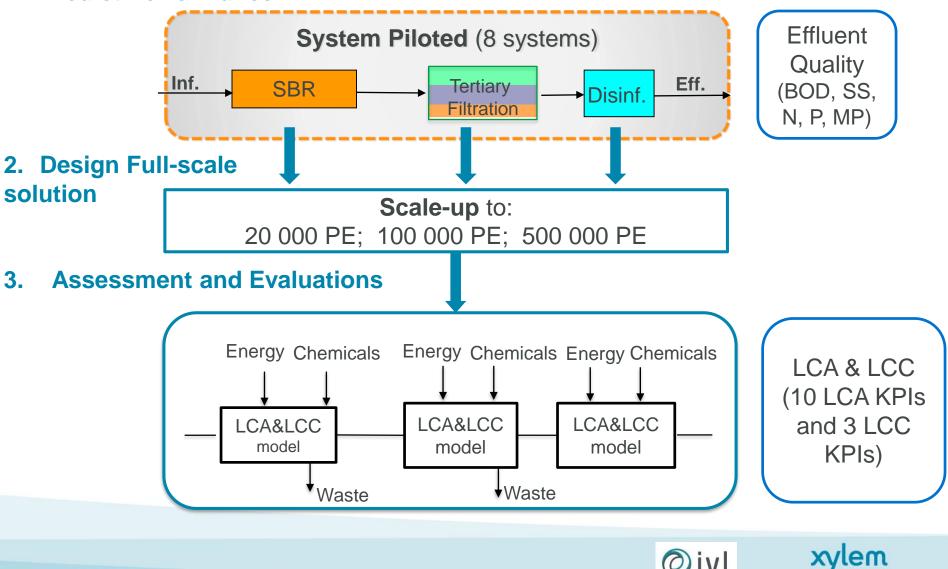
Treatment Trains for NP MAR


@ivl

t's Solve Water

Sustainability Factors

Inform and influence customers on the best environmental and financial reuse solution


- The <u>Life Cycle Assessment (LCA)</u> informs on the environmental impact of the solution
- Full system <u>Life Cycle Cost</u> (LCC) adapts the solution to the economic limitation
- The adapted effluent <u>quality</u> leads to safety at the point of use and social acceptance

LCA / LCC modeling - approach

1. Predict Performance

Commercial Impact

Secondary + Tertiary + Disinfection

0	econdary Treatment (I	DEAG				
36	Goal / Actions		Com mercial Impact			
1	Nitrification / denitrification capabilities		evistin	ng designs have excess apacity		
	Denitrification capacity		Commission and			
	Improve understanding of ICEAS nitroge Tertiary Treatment					
	modes, operating conditions (MLSS, SR		Goal / Actions Gravity Media Filter			
Ш	SIMS and MLSS control optimi: I Filtration performance			-		
	SIMS logic optimization		Reach Target effluent quality	ality Disinfection / Emerging Contaminant		hts
	MLSS control logic definition		-		Goal / Actions	Commercial Impact
ш	DO control for nitrification Tuning of the P&ID control logic		Performance at high hydraulic			
			Chemical-P removal op			
IV	Ammonia control development	1	P removal performance with s (ICEAS & RGSF) chemical ac		Disinfection performance	Confirmation of dose, performance, and design tools
	Optimized partial nitrification in NIT mo	in .	Helminth ova removal		COD and Color reduction	commador or dose, performance, and design tools
٧	P removal		Additional work required to va		COD and Color reduction	Quantified dose required for color performance and COD reduction
	Chemical P-removal in NIT mode		in Peru and Bahrain	UV		cuantiled dose required for color performance and COD reduction
	Luxury bio-P uptake	Disk F	ilter (18µ and 10µ)	00		
	7% N and 3% P sludge composition		Filtration performance		Disinfection dose	
VI	Settling and SVI performance				Characterization of wastewater	Confirmed wastewater microbial dose response
VI	Correlation of SVI with sludge settling c					Validated UV disinfection design dose and tools
	confirm					Cost / performance comparison of UV vs. Chlorination for disinfection
	Correlation between plant operating mo	Suctio	n UF (0.4µ) and Pressuria	UV	+ Chlorine	
	performance	1	Design flux and operat		Residual hypochlorite dose reduction	
VII	Sludge yield evaluation Confirmation of the literature-based slug		verification			Minimal impact of UV disinfection on hypochlorite dose needed for residual
	design tool	-	Impact of influent quality on fluence of NH4 load	x		Confirmation of impacts of ammonia on hypochlorite dose
			and a second second second second	Ozo	one + Biologic Active Filter (BAF)	
			Chemical-P removal opti P removal performance with sin		Micropollutant reduction	
			(ICEAS & UF) chemical additi		Establish effective design for Swiss (FOEN) micropollutant regulation	Confirm design (media, O ₃ dose, contact time) required for reduction Understand reduction in each process Demonstrate harmful byproducts not created
				Ш	Differentiate adsorption and biological degradation	
					Performance of bio active GAC to fresh GAC without ozone	Prepare sales arguments on GAC vs. AOP performance
				ш	Disinfection credit	
						0.5 log - 2 log disinfection credit
				IV	COD and NH4 reduction	
						Confirm design required - linked to R-BAF (Wastewater) VBPD project

Improved Offers

- Denitirfication Capacity
- Advanced Process Control
- Total P effluent add on
- Ozone + BAF for reuse/WW

Optimized Reuse Solutions

- Systems adapted to local and regional requirements
- Lowest possible life cycle costs
- Best micropollutant reduction
- Most environmental and financial sustainable solution
- Unmatched process guarantee

Thanks

christian.baresel@ivl.se, www.hammarbysjostadsverk.se aleksandra.lazic@xyleminc.com, www.xylem.com